690 research outputs found

    The North American Transportation Security Center – SERRI Analysis Update

    Get PDF
    Executive Summary There are over 800,000 hazardous materials (hazmat) shipments over the nation’s roads each day. According to the U.S. Department of Homeland Security (DHS), terrorist activity related to the transportation of hazardous materials represents a significant threat to public safety and the nation’s critical infrastructure. Specifically, the federal government has identified the government’s inability to track hazmat shipments on a real-time basis as a significant security vulnerability. In 2004, the U.S. Federal Motor Carrier Safety Administration (FMCSA) completed a study to determine if “smart truck” technology such as GPS tracking, wireless modems, panic buttons, and on-board computers could be used to enhance hazmat shipment security. The FMCSA study concluded that “smart truck” technology will be highly effective in protecting hazmat shipments from terrorists. The FMCSA study also concluded that “smart truck” technology deployment will produce a huge security benefit and an overwhelmingly positive return on investment for hazmat carriers. The FMCSA study led to the U.S. Transportation Security Administration’s (TSA) Hazmat Truck Security Pilot (HTSP). This congressionally mandated pilot program was undertaken to demonstrate if a hazmat truck tracking center was feasible from a technology and systems perspective. The HTSP project team built a technology prototype of a hazmat truck tracking system to show that “smart truck” technology could be crafted into an effective and efficient system for tracking hazmat shipments. The HTSP project team also built the Universal Communications Interface – the XML gateway for hazmat carriers to use to provide data to a centralized truck tracking center. In August 2007, Congress enacted the 9/11 Act (PL110-53) that directs TSA to develop a program - consistent with the Hazmat Truck Security Pilot - to facilitate the tracking of motor carrier shipments of security-sensitive materials. In June 2008, TSA took a major step forward in establishing a national hazmat security program by issuing guidance for shipments of Tier 1 Highway Security Sensitive Materials (HSSMs), the riskiest shipments from a security perspective. TSA’s Tier 1 HSSM guidance includes Security Action Items which specify security measures – including vehicle tracking – that TSA believes are prudent security measures for shippers and carriers to follow. Compliance with TSA’s Tier 1 HSSM guidance is voluntary but TSA is expected to issue regulations based on the Tier 1 HSSM Security Action Items that will make compliance mandatory. Establishment of a Tier 1 HSSM truck tracking center is critical to implementation of a Tier 1 HSSM regulatory program based on the Security Action items by TSA. The HTSP technology prototype was an excellent first step toward an operational Tier 1 HSSM truck tracking system, however, it falls far short of what TSA needs in an operational system. The Kentucky Transportation Center at the University of Kentucky completed a study December 2008 that examined market drivers that would influence the design and operation of a Tier 1 HSSM truck tracking system. The study was funded by the South East Region Research Initiative (SERRI). The objective of this deliverable is to update the SERRI report with a specific focus on two item: new or enhanced fleet tracking vendor product and service offerings; and programmatic conditions that have changed since December 200

    Evaluation of Rumble Strip Design and Usage

    Get PDF
    The objective of this study was to investigate the following aspects of rumble strips: the optimum height and width of elements in a rumble strip pattern, spacing between them, the effect of grouping elements into sets, the effects of speed on design criteria, and driver reaction to the audible and physical stimuli produced by rumble strips. A survey of design and usage in other states was conducted; and the results show that even though 35 of the 44 responding states have installed rumble strips, only five have warrants for usage. Two types of rumble strip design were evaluated -- one with a constant spacing between elements and another with variable spacing between elements. Simulated tests using strips of plywood showed that a distance of 10 feet (3.0 m) between elements, a strip width of 4 inches (102 mm), and a strip height of 1/2 inch (13 mm) produced the best results. Based on audible and physical stimuli, it was determined that the rumble time should not exceed 3/4 second of continuous rumble for any pattern. Evaluation of field installations failed to show a statistically significant difference in speeds for either the constant-spaced pattern or variable-spaced pattern. Based on these installations and controlled-spacing tests, it appears that the constant-spaced pattern should continue to be used. Polyvinyl strips were installed without much success because of adherence problems. A double layer of reflective marking tape performed satisfactorfly with regard to durability and reflectivity; however, the rumble effect was slight

    The North American Transportation Security Center – Fedtrak Specifications and Release Plan

    Get PDF
    Executive Summary In April 2008, the U.S. Transportation Security Administration (TSA) completed work on the TSA Hazmat Truck Security Pilot (HTSP). This congressionally mandated pilot program was undertaken to prove that a hazmat truck tracking center was feasible from a technology and systems perspective. The HTSP project team built a technology prototype of a hazmat truck tracking system to show that “smart truck” technology could be crafted into an effective and efficient system for tracking hazmat shipments. The HTSP project team also built the Universal Communications Interface – the XML gateway for hazmat carriers to use to provide data to a centralized truck tracking center. In August 2007, Congress enacted the 9/11 Act (PL110-53) that directs TSA to develop a program - consistent with the Hazmat Truck Security Pilot - to facilitate the tracking of motor carrier shipments of security-sensitive materials. In June 2008, TSA took a major step forward in establishing a national hazmat security program by issuing guidance for shipments of Tier 1 Highway Security Sensitive Materials (HSSMs), the riskiest shipments from a security perspective. TSA’s Tier 1 HSSM guidance includes Security Action Items which specify security measures – including vehicle tracking – that TSA believes are prudent security measures for shippers and carriers to follow. Compliance with TSA’s Tier 1 HSSM guidance is voluntary but TSA is expected to issue regulations based on the Tier 1 HSSM Security Action Items that will make compliance mandatory. Establishment of a Tier 1 HSSM truck tracking center is critical to implementation of a Tier 1 HSSM regulatory program based on the Security Action items by TSA. The HTSP technology prototype was an excellent first step toward an operational Tier 1 HSSM truck tracking system. However, it falls far short of what TSA needs in an operational system. In an earlier deliverable, the Kentucky Transportation Center (KTC) at the University of Kentucky examined the “gaps” between the HTSP technology prototype and an operational Tier 1 HSSM truck tracking system. TSA needs a Tier 1 HSSM truck tracking system to support its regulatory ambitions, and FedTrak is being built to specifically serve as the implementing tool for TSA’s Tier 1 HSSM regulatory program. Deliverables 1.1 and 1.2 laid the foundation for development of the Specifications and Release plan for FedTrak, a Tier 1 HSSM truck tracking system. The Kentucky Transportation Center (KTC) held joint application design (JAD) sessions in Northern Virginia (June 3-5), in Lexington, KY (June 23-26) and again in Northern Virginia (July 15-16) to support development of the plan. A representative from NIHS attended the meeting in Lexington. This deliverable summarizes those meetings and the development approach the KTC project team will follow in building the FedTrak system. Specifically, this deliverable: summarizes specifications arising from project team JAD sessions (Section 1.2 and Appendix A); describes how “gaps” identified in Deliverable 1.2 will be filled (Section 1.1); and describes the FedTrak project team’s architectural design and development approach (Sections 2, 3 and 4 ). Release plans for the FedTrak shipper/carrier portals, the FedTrak electronic manifest application, and the FedTrak electronic route application are presented under separate cover

    The North American Transportation Security Center – Technology Prototype Gap Analysis

    Get PDF
    Executive Summary There are over 800,000 hazardous materials (hazmat) shipments over the nation’s roads each day. According to the U.S. Department of Homeland Security (DHS), terrorist activity related to the transportation of hazardous materials represents a significant threat to public safety and the nation’s critical infrastructure. Specifically, the federal government has identified the government’s inability to track hazmat shipments on a real-time basis as a significant security vulnerability. In 2004, the U.S. Federal Motor Carrier Safety Administration (FMCSA) completed a study to determine if “smart truck” technology such as GPS tracking, wireless modems, panic buttons, and onboard computers could be used to enhance hazmat shipment security. The FMCSA study concluded that “smart truck” technology will be highly effective in protecting hazmat shipments from terrorists. The FMCSA study also concluded that “smart truck” technology deployment will produce a huge security benefit and an overwhelmingly positive return on investment for hazmat carriers. The FMCSA study led to the U.S. Transportation Security Administration’s (TSA) Hazmat Truck Security Pilot (HTSP). This congressionally mandated pilot program was undertaken to demonstrate if a hazmat truck tracking center was feasible from a technology and systems perspective. The HTSP project team built a technology prototype of a hazmat truck tracking system to show that “smart truck” technology could be crafted into an effective and efficient system for tracking hazmat shipments. The HTSP project team also built the Universal Communications Interface – the XML gateway for hazmat carriers to use to provide data to a centralized truck tracking center. In August 2007, Congress enacted the 9/11 Act (PL110-53) that directs TSA to develop a program - consistent with the Hazmat Truck Security Pilot - to facilitate the tracking of motor carrier shipments of security-sensitive materials. In June 2008, TSA took a major step forward in establishing a national hazmat security program by issuing guidance for shipments of Tier 1 Highway Security Sensitive Materials (HSSMs), the riskiest shipments from a security perspective. TSA’s Tier 1 HSSM guidance includes Security Action Items which specify security measures – including vehicle tracking – that TSA believes are prudent security measures for shippers and carriers to follow. Compliance with TSA’s Tier 1 HSSM guidance is voluntary but TSA is expected to issue regulations based on the Tier 1 HSSM Security Action Items that will make compliance mandatory. Establishment of a Tier 1 HSSM truck tracking center is critical to implementation of a Tier 1 HSSM regulatory program based on the Security Action items by TSA. The HTSP technology prototype was an excellent first step toward an operational Tier 1 HSSM truck tracking system, however, it falls far short of what TSA needs in an operational system. This deliverable examines the “gaps” between the HTSP technology prototype and an operational Tier 1 HSSM truck tracking system. It draws upon the work of an Independent Verification and Validation contractor that evaluated the HTSP technology prototype. It also examines TSA needs related to implementation of a regulatory program based on Tier 1 HSSM Security Action Items

    NASA/DOD Aerospace Knowledge Diffusion Research Project. Paper 28: The technical communication practices of Russian and US aerospace engineers and scientists

    Get PDF
    As part of Phase 4 of the NASA/DoD Aerospace Knowledge Diffusion Research Project, two studies were conducted that investigated the technical communication practices of Russian and U.S. aerospace engineers and scientists. Both studies had the same five objectives: first, to solicit the opinions of aerospace engineers and scientists regarding the importance of technical communication to their professions; second, to determine the use and production of technical communication by aerospace engineers and scientists; third, to seek their views about the appropriate content of the undergraduate course in technical communication; fourth, to determine aerospace engineers' and scientists' use of libraries, technical information centers, and on-line databases; and fifth, to determine the use and importance of computer and information technology to them. A self administered questionnaire was distributed to Russian aerospace engineers and scientists at the Central Aero-Hydrodynamic Institute (TsAGI) and to their U.S. counterparts at the NASA Ames Research Center and the NASA Langley Research Center. The completion rates for the Russian and U.S. surveys were 64 and 61 percent, respectively. Responses of the Russian and U.S. participants to selected questions are presented in this paper

    NASA/DOD Aerospace Knowledge Diffusion Research Project. Paper 21: Technological innovation and technical communications: Their place in aerospace engineering curricula. A survey of European, Japanese, and US Aerospace Engineers and Scientists

    Get PDF
    Aerospace engineers and scientists from Western Europe, Japan, and the United States were surveyed as part of the NASA/DoD Aerospace Knowledge Diffusion Research Project. Questionnaires were used to solicit their opinions regarding the following: (1) the importance of technical communications to their profession; (2) the use and production of technical communications; and (3) their views about the appropriate content of an undergraduate course in technical communications. The ability to communicate technical information effectively was very important to the aerospace engineers and scientists who participated in the study. A considerable portion of their working week is devoted to using and producing technical information. The types of technical communications used and produced varied within and among the three groups. The type of technical communication product used and produced appears to be related to respondents' professional duties. Respondents from the three groups made similar recommendations regarding the principles, mechanics, and on-the-job communications to be included in an undergraduate technical communications course for aerospace majors

    Polymorphisms in the circadian expressed genes PER3 and ARNTL2 are associated with diurnal preference and GNβ3 with sleep measures

    Get PDF
    Sleep and circadian rhythms are intrinsically linked, with several sleep traits, including sleep timing and duration, influenced by both sleep homeostasis and the circadian phase. Genetic variation in several circadian genes has been associated with diurnal preference (preference in timing of sleep), although there has been limited research on whether they are associated with other sleep measurements. We investigated whether these genetic variations were associated with diurnal preference (Morningness-Eveningness Questionnaire) and various sleep measures, including: the global Pittsburgh Sleep Quality index score; sleep duration; and sleep latency and sleep quality. We genotyped 10 polymorphisms in genes with circadian expression in participants from the G1219 sample (n = 966), a British longitudinal population sample of young adults. We conducted linear regressions using dominant, additive and recessive models of inheritance to test for associations between these polymorphisms and the sleep measures. We found a significant association between diurnal preference and a polymorphism in period homologue 3 (PER3) (P < 0.005, recessive model) and a novel nominally significant association between diurnal preference and a polymorphism in aryl hydrocarbon receptor nuclear translocator-like 2 (ARNTL2) (P < 0.05, additive model). We found that a polymorphism in guanine nucleotide binding protein beta 3 (GNβ3) was associated significantly with global sleep quality (P < 0.005, recessive model), and that a rare polymorphism in period homologue 2 (PER2) was associated significantly with both sleep duration and quality (P < 0.0005, recessive model). These findings suggest that genes with circadian expression may play a role in regulating both the circadian clock and sleep homeostasis, and highlight the importance of further studies aimed at dissecting the specific roles that circadian genes play in these two interrelated but unique behaviours
    • …
    corecore